

PRODUCT DATA SHEET

Code No.: BIA-B1013

Pack sizes: 0.5 mg, 2.5 mg

Synonyms

Borrelidin

Treponemycin, U 78548, C2989

Specifications

CAS #	:	7184-60-3
Molecular Formula	:	C ₂₈ H ₄₃ NO ₆
Molecular Weight	:	489.6
Source	:	Streptomyces sp.
Appearance	:	White Lyophilisate
Purity	:	>95% by HPLC
Long Term Storage	:	-20°C
Solubility	:	Soluble in ethanol, methanol, DMF or DMSO. Poor water solubility.

Application Notes

Borrelidin is an unusual nitrile-containing metabolite isolated from Streptomyces. Originally discovered as active against Borrelia species, borrelidin has since found a role as a selective inhibitor of bacterial and eukaryal threonyl-tRNA synthetase. More recent research has found that borrelidin is a very potent angiogenesis inhibitor and induces apoptosis of the capillary tube-forming cells. Borrelidin is an important lead for antimalarial discovery, displaying activity against drug-resistant Plasmodia.

References

- 1. A unique hydrophobic cluster near the active site contributes to differences in borrelidin inhibition among threonyl-tRNA synthetases. Ruan T. et al., J. Biol. Chem. 2005, 280, 571.
- 2. Borrelidin is an angiogenesis inhibitor; disruption of angiogenic capillary vessels in a rat aorta matrix culture model. Wakabayashi T. et al., J. Antibiot. 1997, 50, 671.
- 3. Anti-angiogenesis effects of borrelidin are mediated through distinct pathways: threonyl-tRNA synthetase and caspases are independently involved in suppression of proliferation and induction of apoptosis in endothelial cells. Kawamura T. et al., J. Antibiot. 2003, 56, 709.
- 4. In vitro and in vivo antimalarial activities of a non-glycosidic 18-membered macrolide antibiotic, borrelidin, against drug-resistant strains of Plasmodia. Otoguro K, et al., J. Antibiot. 2003, 56, 727.

Updated: 20 May 2021

© Copyright BioAustralis 2021